摘要
Previous
前文回顾:
- Machine Learning(一):基于 TensorFlow 实现宠物血统智能识别
- Machine Learning (二) : 宠物智能识别之 Using OpenCV with Node.js
上面的文章中提到了机器学习的预测结果受模型质量的影响很大,如果想要取得好的效果需要通过训练增强优化。
Training Data
1 | curl http://download.tensorflow.org/example_images/flower_photos.tgz \| tar xz -C tf_files |
Training the Network
1 | git clone https://github.com/googlecodelabs/tensorflow-for-poets-2 |
1 | python scripts/retrain.py |
Test:Using the Retrained Model
1 | python scripts/label_image.py --image data/daisy.jpg |
Model
1 | node { |
Optional Parameters
Questions
1 | 22:17:28.523085: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations. |
About Data Sets
扩展阅读:《The Machine Learning Master》
- Machine Learning(一):基于 TensorFlow 实现宠物血统智能识别
- Machine Learning(二):宠物智能识别之 Using OpenCV with Node.js
- Machine Learning:机器学习项目
- Machine Learning:机器学习算法
- Machine Learning:如何选择机器学习算法
- Machine Learning:神经网络基础
- Machine Learning:机器学习书单
- Machine Learning:人工智能媒体报道集
- Machine Learning:机器学习技术与知识产权法
- Machine Learning:经济学家谈人工智能
- 数据可视化(三)基于 Graphviz 实现程序化绘图