摘要
机器学习是人工智能的一个分支。机器学习算法提供了一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的方法。机器学习已广泛应用于数据挖掘、计算机视觉、自然语言处理、搜索引擎、医学诊断、证券市场分析、DNA 测序、战略游戏和机器人等诸多领域。
社区
我正在「Machine Learning」和朋友们讨论有趣的话题,你一起来吧?https://t.zsxq.com/zFUF2zv
机器学习导论
- 机器学习规则 (Rules of Machine Learning)
- 读书笔记|数学之美(Beauty Of Mathmetics)
- Simple EMail Demo | Plug & Play Machine Learning Models in GoLang
机器学习应用
Topic:机器学习与自然语言处理(Natural Language Processing)
- Domain Expert:Professor Michael Collins
Professor of Computer Science,Columbia University - Introduction to Probability, 2nd Edition
ISBN: 978-1-886529-23-6
Publication: July 2008, 544 pages, hardcover
Price: $91.00
Topic:机器学习与计算机图形/视觉处理
- Machine Learning(一):基于 TensorFlow 实现宠物血统智能识别
- Machine Learning (二) : 宠物智能识别之 Using OpenCV with Node.js
Topics
- Machine Learning Techniques Applied to Cyber Security
- Introducing Datalore - an intelligent web application for machine learning
Frameworks
- Top 9 Frameworks in the World of Artificial Intelligence
- You can build a neural network in JavaScript even if you don’t really understand neural networks
Research
- Stanford ML Group
Algorithm is gonna get you | All the buzz at AI’s big shindig | Machine learning’s big event
扩展阅读:《The Machine Learning Master》
- Machine Learning(一):基于 TensorFlow 实现宠物血统智能识别
- Machine Learning(二):宠物智能识别之 Using OpenCV with Node.js
- Machine Learning:机器学习项目
- Machine Learning:机器学习算法
- Machine Learning:如何选择机器学习算法
- Machine Learning:神经网络基础
- Machine Learning:机器学习书单
- Machine Learning:人工智能媒体报道集
- Machine Learning:机器学习技术与知识产权法
- Machine Learning:经济学家谈人工智能
- 数据可视化(三)基于 Graphviz 实现程序化绘图
- Uber 业务预测系统实践